Using Learning Techniques in Invariant Inference

Alex Aiken
Aditya Nori
Rahul Sharma
Saurabh Gupta
Bharath Hariharan

Invariant Inference

- An old problem
- A different approach with two ideas:
 - 1. Separate invariant inference from the rest of the verification problem

Why?

```
Pre )I
for (B)
                                     IÆB
                                     { code }
 ... code ...
                 Post
                                     IÆ:B)
                     Alex Aiken, Stanford
```

Invariant Inference

- An old problem
- A different approach with two ideas:
 - 1. Separate invariant inference from the rest of the verification problem
 - 2. Guess the invariant from executions

Why?

- Complementary to static analysis
 - underapproximations
 - "see through" hard analysis problems
 - · functionality may be simpler than the code
- · Possible to generate many, many tests

Nothing New Under the Sun

- Sounds like DAIKON?
 - Yes!
- Hypothesize (many) invariants
 - Run the program
 - Discard candidate invariants that are falsified
 - Attempt to verify the remaining candidates

A Simple Program

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

· Instrument loop head

 Collect state of program variables on each iteration

A DAIKON-Like Approach

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Hypothesize

$$-s=y$$

 $-s=2y$

· Data

S	Y
0	0

A DAIKON-Like Approach

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

· Hypothesize

Data

S	У
0	0
1	1

A DAIKON-Like Approach

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

Hypothesize

· Data

s	У	
0	0	
1	1	
2	2	
3	3	

Another Approach

```
s = 0;
y = 0;
while( * )
  print(s,y);
  s := s + 1;
  y := y + 1;
```

· Data

S	y	
0	0	
1	1	
2	2	
3	3	

Arbitrary Linear Invariant

$$as + by = 0$$

Data

S	У
0	0
1	1
2	2
3	3

Observation

$$as + by = 0$$

S	y
0	0
1	1
2	2
3	3

Observation

$$as + by = 0$$

{ w Mw	= 0 }
----------	-------

y
0
1
2
3

Observation

$$as + by = 0$$

NullSpace(M)

S	y	w	
0	0	a	0
1	1	b	0
2	2		
3	3		

Linear Invariants

 Construct matrix M of observations of all program variables

Compute NullSpace(M)

· All invariants are in the null space

Spurious "Invariants"

- All invariants are in the null space
 - But not all vectors in the null space are invariants
- Consider the matrix

S	y
0	0

- Need a check phase
 - Verify the candidate is in fact an invariant

An Algorithm

- · Check candidate invariant
 - If an invariant, done
 - If not an invariant, get counterexample
 - A reachable assignment of program variables falsifying the candidate

- Add new row to matrix
 - And repeat

Termination

- How many times can the solve & verify loop repeat?
- Each counterexample is linearly independent of previous entries in the matrix

- So at most N iterations
 - Where N is the number of columns
 - Upper bound on steps to reach a full rank matrix

Summary

- Superset of all linear invariants can be obtained by a standard matrix calculation
- Counter-example driven improvements to eliminate all but the true invariants
 - Guaranteed to terminate

What About Non-Linear Invariants?

```
s = 0;
y = 0;
while( * )
  print(s,y);
  S := S + y;
  y := y + 1;
```

Idea

Collect data as before

- But add more columns to the matrix
 - For derived quantities
 - For example, y^2 and s^2
- How to limit the number of columns?
 - All monomials up to a chosen degree d

[Nguyen, Kapur, Weimer, Forrest 2012]

What About Non-Linear Invariants?

```
s = 0;
y = 0;
while( * )
  print(s,y);
  S := S + y;
  y := y + 1;
```

1	S	y	s ²	y²	sy
1	0	0	0	0	0
1	1	1	1	1	1
1	3	2	9	4	6
1	6	3	36	9	18
1	10	4	100	16	40

Solve for the Null Space

$$a + bs + cy + ds^2 + ey^2 + fsy = 0$$

1	s	y	s ²	y ²	sy	w
1	0	0	0	0	0	а
1	1	1	1	1	1	b
1	3	2	9	4	6	С
1	6	3	36	9	18	d
1	10	4	100	16	40	e
•	20		100		.0	f

W	
а	0
Ь	0
С	0
d	0
e	0
f	0
J	

Candidate invariant: $-2s + y + y^2 = 0$

Comments

- Same issues as before
 - Must check candidate is implied by precondition, is inductive, and implies the postcondition on termination
 - Termination of invariant inference guaranteed if the verifier can generate counterexamples
- · Experience: Solvers do well as checkers!

Experiments

Name	#vars	deg	Data	#and	Guess time (sec)	Check time (sec)	Total time (sec)
Mul2	4	2	75	1	0.0007	0.010	0.0107
LCM/GCD	6	2	329	1	0.004	0.012	0.016
Div	6	2	343	3	0.454	0.134	0.588
Bezout	8	2	362	5	0.765	0.149	0.914
Factor	5	3	100	1	0.002	0.010	0.012
Prod	5	2	84	1	0.0007	0.011	0.0117
Petter	2	6	10	1	0.0003	0.012	0.0123
Dijkstra	6	2	362	1	0.003	0.015	0.018
Cubes	4	3	31	10	0.014	0.062	0.076
geoReihe1	3	2	25	1	0.0003	0.010	0.0103
geoReihe2	3	2	25	1	0.0004	0.017	0.0174
geoReihe3	4	3	125	1	0.001	0.010	0.011
potSumm1	2	1	5	1	0.0002	0.011	0.0112
potSumm2	2	2	5	1	0.0002	0.009	0.0092
potSumm3	2	3	5	1	0.0002	0.012	0.0122
potSumm4	2	4	10	1	0.0002	0.010	0.0102

Alex Aiken, Stanford

Summary to This Point

- Sound and complete algorithm for algebraic invariants
 - Up to a given degree
- Guess and Check
 - Hard part is inference done by matrix solve
 - Check part done by standard SMT solver
 - Much simpler and faster than previous approaches

What About Disjunctive Invariants?

- Disjunctions are expensive
- Existing techniques severely restrict disjunctions
 - E.g., to a template

Good States

Separating Good States and Bad States

Separating Good States and Bad States

More Precisely . . .

- A state is a valuation of program variables
- Correct programs have good and bad states
 - All reachable states are good
 - · Because we assume the program is correct
 - Assertions define the bad states
 - States that would result in the assertion being violated
- An invariant is a separator
 - Of the good states from the bad states

From Verification to Machine Learning

 From data we want to learn a separator of the good and bad states

This is a machine learning problem

Goals

- Produce boolean combination of linear inequalities
 - Without templates
- Predictive
 - Generalizes well from small test suite
- · Efficient
 - Hard, but more on this later

PAC Learning

- Given some positive and negative examples
 - Learn separator
- Separator is Probably Approximately Correct
 - With confidence 1 x the accuracy is 1 e
 - The number of examples is m = poly(1/x,1/e,d)

Example for Good and Bad States

- Good states:
 - -(x,y)=(1,1),(2,2),...
- Bad states:
 - $SAT(x=0 \land y\neq 0)$
 - $SAT(x=1 \land y \neq 1)$

Invariants

- Arbitrary boolean combination of
 - Equalities and
 - Inequalities
 - Over program quantities
- Note "program quantities" includes variables and induced quantities (like x^2)

First Part

- Run tests to get good states
- Run previous algorithm to infer equalities E
- Sample bad states
 - Consider while B do S; assert Q
 - Sample from :B Æ :QÆ E
 - Sample from :B Æ WP(assume(B);S,:Q) Æ E

Idea

- Good and bad states are points in ddimensional space
- Inequalities are planes in this space
- Must pick a set of planes that separate every good from every bad state

Picture

- How many planes are required?
 - At most md
 - m is # points
 - d is dimensionality
- Puts every point in its own cell

Theorem

- · md planes (inequalities) would be awful
- PAC learning can find a subset of the planes that separate the positive and negative points
 - With O(s log m) planes
 - Where s is the size of the minimal separator
 - And m is roughly ds log ds ... (other factors) ...
 - In time md+2

Simple Example

Disjunction Example

Algorithm

- Consider a bipartite graph
 - Connects every good and bad state
- Repeat
 - Pick a plane cutting the maximum number of remaining edges

Analysis Ingredients

- m^d possible planes
- $s = m^2$ are a separator
- The greedy strategy in time m^{d+2} finds s log m planes

Comments

- The fact that there is only a log factor increase in number of planes over the minimum is important
 - Avoids overfitting
- · In practice, the number of planes is small

Efficiency

- The general algorithm is too inefficient
- Impose some assumptions common to verification techniques
 - Reduce set of candidate planes to polynomial

Predicate Abstraction

- The invariant is an (arbitrary boolean combination) of predicates in T
- Can find a PAC separator in time $O(m^2|T|)$
 - Even though the complexity of finding an invariant is NP^{NP} complete

Abstract Interpretation

- Efficient algorithms for restricted abstract domains
 - Boxes O(m³d)
 - Octagons O(m³d²)

Boxes

Boxes

Check Phase

- Use Boogie
- For counter-examples
 - Satisfies precondition, add as positive example
 - Violates assertion, add as negative example
 - If can't label, add as a constraint
 - Increases the guess size

Experiments

	_	_	_	_	_	_
hsort	47	2	5	0.19	1.05	OK
msort	73	6	10	0.093	1.12	OK
nested	21	3	4	0.24	0.99	OK
seq-len1	44	6	5	4.39	1.04	PRE
seq-len	44	6	5	0.32	1.04	OK
svd	50	5	5	4.92	0.99	OK
esc-abs	71	2	6	1.09	1.06	OK
get-tag	120	2	2	0.092	1.04	OK
maill-qp	92	1	3	0.11	1.05	OK
spam	57	2	5	1.01	1.05	OK
split	20	1	5	FAIL	NA	FAIL
div	28	1	6	2.03	ТО	OK
	I	I	I	I	I	I

Application: Equality Checking

- Have extended these techniques to checking equality of arbitrary loops
 - Guess and verify a simulation relation
 - Mine equalities between the two loops as a guide
- Able to prove code generated by gcc -O2 equivalent to CompCert

Discussion

- Sound invariant inference based on PAC learning
- · Machine learning/data mining techniques to
 - Handle disjunctions
 - Non-linearities
- Connects complexity of learning and complexity of verification

Discussion

- Like predecessors, focus on numerical invariants
 - Many other interesting aspects of programs not covered
 - Data structures, arrays, concurrency, higher-order functions ...
- This is where we are headed ...

Thanks!

Questions?